Get Adobe Flash player

Чугун

Скачать

Содержание

Введение……………………………………………………………………………3

1. Состав и сорт чугунов…………………………………..……………………..4

2. Оборудование для термической обработке…………………..…………….6

3. Термическая обработка чугуна………………………………..……………10

Литература…………………………………………………..…………..……….17

 

 

ВВЕДЕНИЕ

В технике под металлом понимают вещества, обла­дающие «металлическим блеском», в той или иной мере присущим всем металлам, и пластичностью. По этому признаку металлы можно легко отличить от неметаллов (например, дерева, камня, стекла или фарфора). «Ме­таллы суть светлые тела, которые ковать можно». Это определение металлов, данное М. В. Ломоносовым, не потеряло своего научного значения и теперь, через 200 лет. М. В. Ломоносов отметил и вторую особенность этих тел — сходство их строения с солями, т. е. кристалличность. В XIX в. была создана научная теория строения тел, согласно которой все твердые тела делятся на две группы: кристаллические и аморфные.

1. Состав и сорт чугунов

Продуктами доменной плавки являются чугун, шлак, и колошниковый газ и колошниковая пыль.

Чугун по назначению делится на три группы: пере­дельный, литейный и доменные ферросплавы. Из всей выплавки более 81% составляют передельные чугуны, которые переплавляются в сталь, и около 19% прихо­дится на долю литейных чугунов и ферросплавов. Из ли­тейного чугуна отливают фасонные детали, а ферро­сплавы используют в качестве добавок (раскислителей) при выплавке стали.

Чугун представляет собой сложный железоуглероди­стый сплав, в котором углерода содержится от 2 до 4,3%, кремния – 0,5-4,25%, марганца – 0,2-2%,   серы – 0,02-0,2%, фосфора – 0,1-1,2%. Влияние элементов, входящих в состав чугуна, на его свойства велико. Они определяют структуру и свойства чугуна.

Углерод—важнейшая составляющая чугуна. Углерод находится в чугуне в различных состояниях: в виде химически связанного соединения с железом Fе3С, назы­ваемого карбидом железа (или цементитом), и в сво­бодном состоянии – в виде графита.

Если углерод находится в чугуне в виде цементита, то чугун имеет в изломе белый цвет. Цементит кристалли­зуется непосредственно из жидкого сплава. Чем быстрее идет процесс охлаждения (как при переходе чугуна из жидкого состояния в твердое, так и в твердом состоя­нии), тем больше в нем будет находиться химически связанного углерода.

Чугун, в котором углерод находится в виде цемен­тита, называется белым чугуном.

Если углерод находится в чугуне главным образом в свободном состоянии – в виде графита, то чугун имеет в изломе серый цвет и называется серым чугуном.

Марганец способствует получению белого чугуна, так как образует с углеродом карбиды Мn3С и этим препятствует графитизации. Поэтому в белых чугунах бывает 2–2,5%, а иногда и 3,5% Мn, а в сером чугуне – не более 1,3%.

Кремний является важнейшей после углерода при­месью в чугуне. Кремний увеличивает жидкотекучесть и способствует получению серого чугуна. В сером чугуне кремния содержится от 1,25 до 4,25%, а в белом – от 0,2 до 2%.

Сера – вредная примесь в чугуне. Она ухудшает механические свойства чугуна, понижая его прочность увеличивая хрупкость, и придает чугуну густотекучесть, пузырчатость, т. е. ухудшает его литейные свойства. Поэтому содержание серы в чугуне не должно превышать 0,08%.

Фосфор также понижает прочность и увеличивает хрупкость чугуна, но, несмотря на это, он бывает и полезной примесью, так как увеличивает жидкотекучесть серого чугуна. Это качество имеет большое значение при изготовлении художественного и тонкостенного литья. Содержание фосфора в ответственных отливках допускается до 0,1%, а в менее ответственных – до 1,2%.

В доменных печах выплавляют чугун следующих сор­тов: передельный, литейный, доменные ферросплавы и специальные чугуны.

Передельный чугун делится на 3 класса:

1) мартеновский чугун марок М-1 и М-2, содержащий 1,5–2,5% Мn, 0,3–1,5% Si 0,15–0,2 % P и 0,03-И 0,07% S.

2) бессемеровский чугун марок Б-1 и Б-2, получаемый из малофосфористых руд и содержащий 0,6–1,5% Мn, 0,9-2,0% Si до 0,07% Р и до 0,04% S.

3) томасовский чугун марки Т-1, выплавляемый из фосфористых руд и содержащий 1,6–2% Р, 0,08–1,3% Мn, 0,2–0,6% Si; и 0,08% S.

Передельный чугун идет на переделку в сталь.

Литейный чугун марок ЛК-00, ЛК-0, ЛК-1 и других получают из шихты с достаточным содержанием кремне­зема. В зависимости от марки он содержит 1,25–4,25% Si и до 1,3% Мn. Литейный чугун идет на отливку раз­личных деталей. Его классификация приведена в раз­деле «Литейное производство».

Доменные ферросплавы, т. е. сплавы железа с раз­личными элементами (марганцем, кремнием, фосфором и др.), используют в качестве раскислителей и леги­рующих добавок в сталеплавильных агрегатах и вагран­ках. В доменных печах выплавляют преимущественно следующие ферросплавы и специальные чугуны: зер­кальный чугун, ферромарганец, ферросилиций, силикошпигель, феррофосфор, ферроманганфосфор.

Специальные чугуны — хромоникелевые, ванадиевые, титанистые.

Хромоникелевые чугуны выплавляют из руд, содержа­щих хром и никель. Эти чугуны бывают литейные, содер­жащие до 2,2–3,8% хрома и около 1% никеля, и пере­дельные, содержащие до 1,75% никеля.

Ванадиевые чугуны получают при плавке в домен­ных печах титаномагнетитовых руд, в которых имеется небольшое количество пятиокиси ванадия (V2O5). При­меняют также чугуны для передела на сталь для вы­плавки феррованадия.

Титанистые чугуны получают при производстве в до­менных печах высокоглиноземистых шлаков, которые являются в данном случае основным продуктом плавки, а чугун с содержанием титана 0,6–0,7% – побочным продуктом.

Отгружаемые с завода чушковый чугун и ферроспла­вы маркируют несмываемой краской определенного цвета, присвоенного каждой марке чугуна и ферроспла­вов, и снабжают сертификатом. В сертификате указы­вают полный анализ каждого выпуска и подтверждают отделом технического контроля завода, что чугун или ферросплавы отвечают требованиям ГОСТа. Сертификат отправляют заказчику одновременно с отгрузкой чу­гуна.

2. Оборудование для термической обработки

Для термической обработки применяют оборудова­ние, состоящее из нагревательных печей, закалочных устройств, приборов для контроля тепловых режимов и др.

Печи для термической обработки. Термические печи бывают самых разнообразных конструкций, в зависимо­сти от способа передачи тепла от печи к нагреваемым деталям, метода загрузки печи, способов получения тепла (источника тепла), назначения печи, характера её работы и т. п.

В зависимости от способа передачи тепла нагре­ваемым деталям печи делятся на камерные, муфельные и печи-ванны.

В камерных печах (рис. 1,а) нагреваемую деталь помещают в то же пространство (камеру), через кото­рое проходят горячие газы. Таким образом, в камерных печах детали нагреваются в результате непосредствен­ного соприкосновения их с пламенем и горячими га­зами.          

 

Рисунок 1 - Печи для термической обработки:

а — камерная электрическая печь с неподвижным подом; б—муфельная (колпаковая) печь: 1свод; 2—муфель (колпак); 3—электрические нагреватели; 4—детали; 5— поддон; 6—песочный раствор; в — печь-ванна (электродная).

В муфельных печах (рис. 1 б) детали, помещенные в специальный ящик под колпак, не соприкасаются ни с пламенем, ни с горячими газами. Горячие газы и пламя нагревают муфель, а детали получают тепло от стенок муфеля. Муфельные печи применяют в тех случаях, когда нельзя допускать соприкосновения нагреваемых деталей с печными газами (при светлом отжиге, газовой цементации и т. д.).

Печи-ванны (рис. 1,в) имеют ту особенность, что , нагреваемые детали погружаются в расплавленную соль, ^ в расплавленный свинец или в горячее масло, находящиеся в тигле. Печи-ванны применяют для быстрого на­гревания мелких деталей.

Печи загружают тремя способами: сбоку, сверху (в шахтных печах) и при помощи выдвижного пода. Нагревают печи топливом или электрическим током. Для нагрева печи топливом приходится устраивать топки или камеры сгорания, ставить форсунки или го­релки, делать в кладке печи газовые каналы и дымо­ходы для отвода горячих газов. При нагреве электриче­ским током необходимость во всех этих устройствах отпадает. Температура нагрева в электропечах достигает 1350° С; в них обеспечивается точность регулирования температуры,

По назначению различают термические печи для отжига, нормализации, закалки, отпуска, азотирования и цианирования.

По характеру работы различают печи периодического и непрерывного действия. Из печей периодического дей­ствия широкое применение (особенно в единичном и мелкосерийном производстве) получили камерные печи с неподвижным подом (рис. 1,а).

Эти печи, имеющие площадь пода от 0,5 до 6 м2 и производительность от 70 до 200 кг/м2/час, используют для отжига, закалки, отпуска, цементации и других ви­дов термической обработки. При отжиге и нормализации крупных деталей применяют камерные печи с выдвижным подом. Площадь пода у печей этого типа — от 3 до 20 м2, а производительность — от 50 до 250 кг/м2/час.

Для безокислительного нагрева деталей применяют печи с контролируемой атмосферой, характерной осо­бенностью которых является герметичность рабочего пространства. Печи непрерывного действия характеризуются высокой степенью механизации и автоматизации.

В настоящее время в термических цехах широко ис­пользуются электрические печи с металлическими и не­металлическими (карборундовыми) нагревателями. Наи­более распространены электрические печи с металличе­скими нагревателями из сплавов, обладающих высоким электросопротивлением. Чаще всего для этой цели ис­пользуют сплавы никеля с хромом (нихромы), а также сплавы на железной основе (в виде проволоки или лен­ты), содержащие значительное количество хрома и алю­миния. Обычно металлические нагреватели располагают па боковых стенках, на поду или под сводом печи.

Если необходимо получить в печи температуру свыше 1350° С, то применяют металлические нагреватели, кото­рые представляют собой стержни, изготовляемые в ос­новном из карбида кремния. Карборундовые нагрева­тели выдерживают температуру до 1500° С.

По сравнению с пламенными в электрических печах наиболее полно используется тепло (к. п. д. пламенных термических печей 12—15%, электрических — 50 – 80%). В электрических печах сравнительно легко регулируется температура.

В последние годы все большее распространение полу­чают безмуфельные печи с радиационными трубами, в которых происходит сжигание газа. Стенки радиацион­ных труб нагреваются до высокой температуры и по­добно нагревателям в электрических печах являются источником излучения тепла. Диаметр трубы – 80 – 90 мм, толщина стенок – 4–6 мм. Трубы изготовляют из жаропрочной стали. Через конец трубы подают газ и воздух. Продукты горения отводятся в вытяжные трубы. Замена муфелей радиационными трубами позволяет сэкономить дорогостоящую жароупорную сталь.

Измерение температур. Для измерения и контроля температур до 400° С в термических печах применяют термометры, а в печах с рабочей температурой до 1250° С и выше—термоэлектрические и оптические пи­рометры.

Ртутные и спиртовые термометры применяют в термических цехах для измерения температуры зака­лочных жидкостей, низкого отпуска и старения стальных деталей при нагреве до 300—400° С, а также при обра­ботке стали холодом при температуре до минус 100—150° С.

Термоэлектрическими пирометрами пользуются для измерения температуры почти при всех видах термиче­ской обработки. Они состоят из двух частей: термопары и милливольтметра (гальванометра).

 

Рисунок 2 - Приборы для измерения температур.

а—схема устройства термопары; б—оптический пирометр; 1— окуляр; 2— электрическая лампочка; 3 — аккумуляторная батарея: 4 — кольцо рео­стата; в — нить лампочки в поле зрения окуляра пирометра.

Принцип работы термопары (рис. 2а) сводится к следующему. Если взять две проволоки а и а1 из раз­ных металлов, а один конец их А сварить (горячий спай термопары) и поместить в среду, температуру которой нужно измерить, то на свободных концах b и b1 термо­пары (холодный спай) появится разность потенциалов, измеряемая в милливольтах. Эта разность будет тем больше, чем больше разность температур горячего и хо­лодного спая термопары.

3. Термическая обработка чугуна

В машиностроении применяют отливки из серого, я ковкого и высокопрочного чугунов. Эти чугуны отличаются от белого чугуна тем, что у них весь углерод или большая часть его находится в свободном состоя­нии в виде графита (у белого чугуна весь углерод нахо­дится в виде цементита).

Структура указанных чугунов состоит из металличе­ской основы аналогично стали (перлит и феррит) и не­металлических включений – графита.

Серый, ковкий и высокопрочный чугуны отличаются друг от друга в основном формой графитовых включе­ний. Это и определяет различие механических свойств указанных чугунов.

У серого чугуна при рассмотрении под микроскопом графит имеет форму пластинок.

Графит обладает низкими механическими свойства­ми. Он нарушает сплошность металлической основы и действует как надрез или мелкая трещина. Чем крупнее и прямолинейнее формы графитовых включений, тем хуже механические свойства серого чугуна.

Основное отличие высокопрочного чугуна заклю­чается в том, что графит в нем имеет шаровидную (округленную) форму. Такая форма графита лучше пластинчатой, так как при этом значительно меньше на­рушается сплошность металлической основы.

Ковкий чугун получают длительным отжигом отли­вок из белого чугуна, в результате которого образуется графит хлопьевидной формы – углерод отжига.

Механические свойства рассматриваемых чугунов можно улучшить термической обработкой, при этом не­обходимо помнить, что в чугунах создаются значитель­ные внутренние напряжения, поэтому нагревать чугун­ные отливки при термической обработке следует мед­ленно, чтобы избежать образования трещин.

Отливки из чугуна подвергают следующим видам термической обработки.

Низкотемпературный отжиг. Чтобы снять внутренние напряжения и стабилизировать размеры чугунных отли­вок из серого чугуна, применяют естественное старение или низкотемпературный отжиг.

Более старым способом является естественное старе­ние, при котором отливка после полного охлаждения претерпевает длительное вылеживание – от 3–5 меся­цев до нескольких лет. Естественное старение приме­няют в том случае, когда нет нужного оборудования для отжига.

Этот способ в настоящее время почти не применяют, а производят главным образом низкотемпературный от­жиг. Для этого отливки после полного затвердевания укладывают в холодную печь (или печь с температурой 100–200° С) и медленно (со скоростью 75–100° в час) нагревают до 500–550° С. При этой температуре их вы­держивают 2–5 час. и охлаждают до 200° С со скоро­стью 30–50° в час, а затем – на воздухе.

Графитизирующий отжиг. При отливке изделий воз­можен частичный отбел серого чугуна с поверхности или даже по всему сечению. Чтобы устранить отбел и улучшить обрабатываемость чугуна, производится вы­сокотемпературный Графитизирующий отжиг с выдерж­кой при температуре 900–950° С в течение 1–4 час. и охлаждением изделий до 250–300° С вместе с печью, а затем – на воздухе. При таком отжиге в отбеленных участках цементит Fe3С распадается на феррит и гра­фит, вследствие чего белый или половинчатый чугун переходит в серый.

Нормализация. Нормализации подвергают отливки простой формы и небольших сечений. Нормализация проводится при температуре 850–900° С с выдержкой 1–3 часа и последующим охлаждением отливок на воз­духе. При таком нагреве часть углерода (графита) рас­творяется в аустените. После охлаждения на воздухе металлическая основа получает структуру трооститовидного перлита с более высокой твердостью и лучшей сопротивляемостью износу. Для серого чугуна нормали­зацию применяют сравнительно редко, более широко применяют закалку с отпуском.

Закалка деталей из серого чугуна. Повысить проч­ностные свойства серого чугуна можно его закалкой. Она производится с нагревом до 850–900° С и охлаж­дением в воде. Закалке можно подвергать как перлит­ные, так и ферритные чугуны. Твердость чугуна после закалки достигает НВ 450–500. В структуре закален­ного чугуна имеются мартенсит со значительным количеством остаточного аустенита и выделения гра­фита.

Эффективным методом повышения прочности и изно­соустойчивости серого чугуна является изотермическая закалка, которая производится аналогично закалке стали.

Высокопрочные чугуны с шаровидным графитом можно подвергать пламенной или высокочастотной по­верхностной закалке. Чугунные детали после такой обработки имеют высокую поверхностную твердость, вязкую сердцевину и хорошо сопротивляются ударным на­грузкам и истиранию.

Легированные серые чугуны и высокопрочные маг­ниевые чугуны иногда подвергают азотированию. По­верхностная твердость азотированных чугунных изде­лий достигает НВ 600—800; такие детали имеют высо­кую износоустойчивость. Хорошие результаты дает сульфидирование чугуна; так, например, сульфидированные поршневые кольца быстро прирабатываются, хорошо сопротивляются истиранию, и срок их службы повышается в несколько раз.

Отпуск. Чтобы снять закалочные напряжения, после закалки производят отпуск. Детали, предназначенные для работы на истирание, проходят низкий отпуск при температуре 200–250° С. Чугунные отливки, не работающие на истирание, подвергаются высокому отпуску, при температуре 500–600° С. При отпуске закаленных чугунов твердость понижается значительно меньше, чем при отпуске стали. Это объясняется тем, что в струк­туре закаленного чугуна имеется большое количество остаточного аустенита, а также тем, что в нем содер­жится большое количество кремния, который повышает отпускоустойчивость мартенсита.

Для отжига на ковкий чугун применяют белый чугун примерно следующего химического состава: 2,5–3,2% С, 0,6–0,9% Si, 0,3–0,4% Мn, 0,1–0,2% Р и 0,06-0,1% S.

Существует 2 способа отжига на ковкий чугун:

графитизирующий отжиг в нейтральной среде, осно­ванный на разложении цементита на феррит и углерод отжига;

обезуглероживающий отжиг в окислительной среде, основанный на выжигании углерода.

Отжиг на ковкий чугун по второму способу зани­мает 5–6 суток, поэтому в настоящее время ковкий чу­гун получают главным образом графитизацией. Отливки, очищенные от песка и литников, упаковывают в ме­таллические ящики либо укладывают на поддоне, а за­тем подвергают отжигу в методических камерных и дру­гих отжигательных печах.

Процесс отжига состоит из двух стадий графитизации. Первая стадия заключается в равномерном нагреве отливок до температуры 950–1000° С с выдерж­кой 10–25 час.; затем температуру понижают до 750– 720° С при скорости охлаждения 70–100° в час. На второй стадии при температуре 750–720° С дается вы­держка 15–30 час., затем отливки охлаждаются вместе с печью до 500–400° С и при этой температуре извле­каются на воздух, где охлаждаются с произвольной скоростью.

При таком ступенчатом отжиге в области темпера­тур 950–1000° С идет распад (графитизация) первич­ного, т. е. эвтектического (ледебуритного) цементита, а при температуре 750—720° С распадаются вторичный и эвтектоидный (перлитный) цементиты. В результате отжига по такому режиму структура ковкого чугуна представляет собой зерна феррита с включениями гнезд углерода отжига – графита.

Перлитный ковкий чугун получается в результате неполного отжига: после первой стадии графитизации при температуре 950–1000° С чугун охлаждается вме­сте с печью; вторая стадия графитизации не проводится. Структура перлитного ковкого чугуна состоит из пер­лита и углерода отжига.

Чтобы повысить вязкость, перлитный ковкий чугун подвергают сфероидизации при температуре 700–750° С, что создает структуру зернистого перлита.

Для ускорения процесса отжига на ковкий чугун из­делия из белого чугуна подвергают закалке, затем про­водят графитизацию при температуре 1000–1100° С.

Ускорение графитизации закаленных чугунов при отжиге объясняется наличием большого количества цент­ров графитизации, образовавшихся при закалке. Это дает возможность сократить время отжига закаленных отливок до 15–7 час.

Метод предварительного нагрева и закалки отливок из белого чугуна разработан металлургами А. Д. Ассоновым и В. И. Прядиновым и широко применяется в различных отраслях промышленности.

Термическая обработка ковкого чугуна. Чтобы повысить прочность и износоустойчивость, ковкие чугуны подвергают нормализации или закалке с отпуском. Нормализация ковкого чугуна производится при 850–900°С с выдержкой при этой температуре 1–1,5 часа и охлаждением на воздухе. Если после отливки заготовки имеют повышенную твердость, то их следует подвергать высокому отпуску при температуре 650–680° С с выдержкой 1–2 часа.

Иногда ковкий чугун подвергают закалке, чтобы получить более высокую прочность и износоустойчивость за счет снижения пластичности. Температура нагрева под закалку та же, что и при нормализации; охлажде­ние производится в воде или масле, а отпуск, в зависи­мости от требуемой твердости, обычно при температуре 650–680° С.

Быстрое охлаждение может производиться непосред­ственно после первой стадии графитизации при дости­жении температуры 850–880° С с последующим высоким отпуском.

Для ковкого чугуна применяют закалку токами высокой частоты или кислородно-ацетиленовым пламенем, при этом может быть достигнута высокая твердость поверхностного слоя при достаточной пластичности основной массы. Метод такой закалки тормозных колодок из ферритного ковкого чугуна заключается в нагреве дета­лей токами высокой частоты до температуры 1000– 1100° С с выдержкой 1–2 мин. и последующим быст­рым охлаждением. Структура закаленного слоя состоит из мартенсита и углерода отжига твердостью НRС 56–60.

Ковкий чугун по сравнению со сталью более деше­вый материал; он обладает хорошими механическими свойствами и высокой коррозионной стойкостью. По­этому детали из ковкого чугуна широко применяются в сельскохозяйственном машиностроении, автотрактор­ной промышленности, станкостроении (для изготовле­ния зубчатых колес, звеньев цепей, задних мостов, кронштейнов, тормозных колодок и пр.) и в других отраслях народного хозяйства.

Ковкие чугуны маркируют буквами КЧ, означаю­щими ковкий чугун, затем идут два числа: первое число показывает предел прочности при растяжении, второе – относительное удлинение.

ГОСТом 1215-59 установлены следующие марки ков­ких чугунов: КЧЗО-6, КЧЗЗ-8, КЧ35-10. . КЧ37-12, КЧ45-6, КЧ50-4, КЧ56-4, КЧ60-3 и КЧ63-2.

 

ЛИТЕРАТУРА

  1. Кропивницкий Н.Н. Технология металлов. Лениздат, 1973, 463 с.
  2. Коротин И.Н. Термист. – М.: Профтехиздат, 1963, 280 с.
  3. Шмыков Справочник термиста. – М.: Государственное научно-техническое издательство машиностроительной литературы. 1961 г. 384 с.
Сколько до сессии?
Сентября 2014 Октября 2014
По Вт Ср Че Пя Су Во
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30
Поиск
Программы в помощь